Huntington’s Disease: Calcium Dyshomeostasis and Pathology Models

نویسندگان

  • Y.A. Kolobkova
  • V.A. Vigont
  • A.V. Shalygin
  • E.V. Kaznacheyeva
چکیده

Huntington's disease (HD) is a severe inherited neurodegenerative disorder characterized by motor dysfunction, cognitive decline, and mental impairment. At the molecular level, HD is caused by a mutation in the first exon of the gene encoding the huntingtin protein. The mutation results in an expanded polyglutamine tract at the N-terminus of the huntingtin protein, causing the neurodegenerative pathology. Calcium dyshomeostasis is believed to be one of the main causes of the disease, which underlies the great interest in the problem among experts in molecular physiology. Recent studies have focused on the development of animal and insect HD models, as well as patient-specific induced pluripotent stem cells (HD-iPSCs), to simulate the disease's progression. Despite a sesquicentennial history of HD studies, the issues of diagnosis and manifestation of the disease have remained topical. The present review addresses these issues.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Calcium in the initiation, progression and as an effector of Alzheimer’s disease pathology

The cause(s) of sporadic Alzheimer's disease (sAD) are complex and currently poorly understood. They likely result from a combination of genetic, environmental, proteomic and lipidomic factors that crucially occur only in the aged brain. Age-related changes in calcium levels and dynamics have the potential to increase the production and accumulation of both amyloid-beta peptide (Abeta) and tau ...

متن کامل

Calcium dyshomeostasis in white matter pathology.

Calcium (Ca2+) dyshomeostasis is a major event in the pathophysiology of white matter disorders of the brain and spinal cord. All cellular components of white matter, including macroglial cells and axons, are endowed with membrane Ca2+-permeable receptors and channels lodged in the cell membrane, as well as store-operated channels and pumps. Intracellular Ca2+ overload resulting from deregulate...

متن کامل

Raloxifene neutralizes the adverse effects of glutamate on cultured neurons by regulation of calcium oscillations.

Calcium dyshomeostasis is an important pathology of memory impairment. However, the mechanism of how calcium dyshomeostasis impairs neurons has remained elusive. The aim of the present study was to reveal the influence of calcium dyshomeostasis on the expression of calcium memory‑associated proteins and the ability of raloxifene to neutralize the adverse effects of glutamate on cultured neurons...

متن کامل

Preventing Effect of L-Type Calcium Channel Blockade on Electrophysiological Alterations in Dentate Gyrus Granule Cells Induced by Entorhinal Amyloid Pathology

The entorhinal cortex (EC) is one of the earliest affected brain regions in Alzheimer's disease (AD). EC-amyloid pathology induces synaptic failure in the dentate gyrus (DG) with resultant behavioral impairment, but there is little known about its impact on neuronal properties in the DG. It is believed that calcium dyshomeostasis plays a pivotal role in the etiology of AD. Here, the effect of t...

متن کامل

It's all in the metals.

In the wonderful frame of Cape Town, neuroscientists from all over the world met to discuss the role of metals in brain function. The day was opened by a very intriguing plenary lecture from James Connor (Penn State University). The topic of this comprehensive talk was the role of iron dyshomeostasis in neurological diseases. Dr. Connor illustrated how iron unbalance could be linked to a variet...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2017